Robotic platform autonomously unmounting a wheel using an impact wrench. Completing this task requires complex mechanical interaction between the robot, the tool and the manipulated object.
We have developed algorithms which enable an autonomous manipulation system to grasp a wide range of objects and to perform a certain number of manipulation tasks, such as drilling, using a stapler, unlocking a door with a key or changing a tire [ ]. More generally, we are interested in providing complete integrated systems with a certain level of autonomy. The motion system of the architecture is centered around two key concepts: 1) the control of contact interaction through high performance force and impedance control and 2) the use of optimization to generate reproducible motions of high quality.
Unlike an industrial robot, such a system has to adapt to situations it has not previously encountered. Therefore, it needs to infer properties of its surroundings using sensors, learn from experience and be robust to disturbances. In the context of this project we develop algorithms which address these challenges. A few examples are:
- Data-driven grasping algorithms [ ]
- Learning approaches for force control [ ]
- Algorithms for reactive movement adaptation in face of disturbances [ ]
- 3D object tracking algorithms using a range camera [ ]